Evaluating and Fine-Tuning Regression Models in Python with Scikit-learn

Free Live ML Workshop #3 on Sep 3 - Register Now

Description

Discover the basic concepts of cluster analysis, and then study a set of typical clustering methodologies, algorithms, and applications. This includes partitioning methods such as k-means, hierarchical methods such as BIRCH, and density-based methods such as DBSCAN/OPTICS. Moreover, learn methods for clustering validation and evaluation of clustering quality. Finally, see examples of cluster analysis in applications.Read more.

This resource is offered by an affiliate partner. If you pay for training, we may earn a commission to support this site.

Career Relevance by Data Role

The techniques and tools covered in Cluster Analysis in Data Mining are most similar to the requirements found in Business Analyst job advertisements.

Similarity Scores (Out of 100)