Switch to English Site

dotsdots

Mathematics for Machine Learning: PCA - Intermedio Data Science Course

Descripción

This intermediate-level course introduces the mathematical foundations to derive Principal Component Analysis (PCA), a fundamental dimensionality reduction technique. We'll cover some basic statistics of data sets, such as mean values and variances, we'll compute distances and angles between vectors using inner products and derive orthogonal projections of data onto lower-dimensional subspaces. Using all these tools, we'll then derive PCA as a method that minimizes the average squared reconstruction error between data points and their reconstruction.Lee mas.

Este recurso es ofrecido por un socio afiliado. Si paga por la capacitación, podemos ganar una comisión para respaldar este sitio.

Relevancia profesional por rol de datos

The techniques and tools covered in Mathematics for Machine Learning: PCA are most similar to the requirements found in Científico de datos data science job advertisements.

Puntuaciones de similitud (sobre 100)

Secuencia de aprendizaje

Mathematics for Machine Learning: PCA is a part of dos structured learning paths.

Coursera
Imperial College London
None
DataKwery